Кровля, крыша, монтаж, инструменты
Поиск по сайту

Биохимический метод очистки сточных вод. Сооружения биологической очистки сточных вод нпз

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биохимические методы очистки сточных вод

1. Общие положения

Биохимический метод применяется для очистки хозяйственно-бытовых и промышленных сточных вод от многих растворенных органических и некоторых неорганических (сероводорода, сульфидов, аммиака, нитритов и др.) веществ. Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания в процессе жизнедеятельности - органические вещества для микроорганизмов являются источником углерода.

Контактируя с органическими веществами, микроорганизмы частично разрушают их, превращая в воду, диоксид углерода, нитрит- и сульфат-ионы и др. Другая часть вещества идет на образование биомассы. Разрушение органических веществ называют биохимическим окислением. Некоторые органические вещества способны легко окисляться, а некоторые не окисляются совсем или окисляются очень медленно.

При отношении (БПК/ХПК)*100%=50% вещества поддаются биохимическому окислению. При этом необходимо, чтобы сточные воды не содержали ядовитых веществ и примесей солей тяжелых металлов.

Для неорганических веществ, которые практически не поддаются окислению. Также устанавливают максимальные концентрации. Если такие концентрации превышены, воды нельзя подвергать биохимической очистке.

Известны аэробные и анаэробные методы биохимической очистки сточных вод. Аэробный метод основан на использовании аэробных групп организмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 0 С. При изменении кислородного и температурного режима состав и число микроорганизмов меняются. При аэробной очистке микроорганизмы культивируются в активном иле или биопленке. Анаэробные методы очистки протекают без доступа кислорода; их используют главным образом для обезвреживания осадков.

1.1 Состав активного ила и биопленки

Активный ил состоит из живых организмов и твердого субстрата. Живые организмы представлены скоплениями бактерий и одиночными бактериями, простейшими червями, плесневыми грибами, дрожжи, актиномицетами и редко - личинками насекомых, рачков, а также водорослями и др.

Активный ил представляет собой амфотерную коллоидную систему. При pH=4-9 имеющую отрицательный заряд.

Например, химический состав активного ила системы очистки коксохимического завода отвечает формуле; городских сточных вод.

Качество ила определяется скоростью его осаждения и степенью очистки жидкости. Крупные хлопья оседают быстрее, чем мелкие. Состояние ила характеризует иловый индекс, который представляет собой отношение объема осаждаемой части активного ила к массе высушенного осадка (в граммах) после отстаивания в течение 30 мин. Чем хуже оседает ил, тем более высокий иловый индекс он имеет.

1.2 Биохимический показатель

Биохимической активностью микроорганизмов называют биохимическую деятельность, связанную с разрушением органических загрязнений сточных вод. Биоразлагаемость сточных вод характеризуется через биохимический показатель, под которым понимают отношение.

Биохимический показатель является параметром, необходимым для расчета и эксплуатации промышленных сооружений для очистки сточных вод. Его значение колеблется в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий биохимический показатель (0,05-0,3); бытовые сточные воды - свыше 0,5.

Скорость биохимических реакций определяется активностью ферментов, которая зависит от температуры, pH и присутствия в сточной воде различных веществ. С повышением температуры скорость ферментативных процессов повышается, но до определенного предела. Для каждого фермента имеется оптимальная температура, выше которой скорость реакции падает. Для разрушения сложной смеси органических веществ необходимо 80-100 различных ферментов. К числу веществ (активатора), которые повышают активность ферментов, относятся многие витамины и катионы. В тоже время соли тяжелых металлов, синильная кислота, антибиотики являются ингибитором. Они блокируют активные центры фермента, препятствуют его реакции с субстратом, т.е. резко снижают активность.

Суммарные реакции биохимического окисления в аэробных условиях схематично можно представить в следующем виде:

Реакция (1) показывает характер окисления вещества для удовлетворения энергетических потребностей клетки, реакция (2) - для синтеза клеточного вещества.

1.3 Прирост биомассы

В процессе очистки сточных вод происходит процесс прироста биомассы, который зависит от химической природы загрязнений, вида и возврата микроорганизмов, БПК и ХПК, от концентрации фосфора и азота в сточной воде, от ее температуры. Прирост биомассы зависит от скорости размножения микроорганизмов и имеет сложную зависимость от времени.

Для приближенных расчетов прирост биомассы (Пр) можно определить по формуле

Коэффициент К, характеризующий качество ила, для ПСВ определяется экспериментально и изменяется в пределах 0,1-0,9.

1.4 Влияние различных факторов на скорость биохимического окисления

При заданной степени очистки основными факторами, влияющими на скорость биохимических реакций, являются концентрация потока, содержание кислорода в сточной воде, температура и pH среды, содержание биогенных элементов, а также тяжелых металлов и минеральных солей.

Турбулизация сточных вод в очистных сооружениях способствует распаду хлопьев активного ила па более мелкие и увеличивает скорость поступления питательных веществ и кислорода к микроорганизмам, что приводит к повышению скорости очистки. Интенсивность перемешивания зависит от количества подаваемого воздуха. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обеспечивает равномерное распределение его в сточной воде.

Доза активного ила зависит от илового индекса. Чем меньше иловый индекс, тем большую дозу активного ила необходимо подавать на очистные сооружения. Рекомендуется поддерживать следующие соотношения:

Иловый индекс, мг/л 50 80 120 150 200 250 300

Доза ила, г/л 6 4,3 3 2,5 2 15 1

Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температуры и pH среды.

Установлено, что с повышением температуры сточной воды скорость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30°С. Превышение указанной температуры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адаптации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. Повышение температуры в оптимальных пределах ускоряет процесс разложения органических веществ в 2-3 раза. С увеличением температуры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.

Активный ил способен сорбировать соли тяжелых металлов. При этом снижается биохимическая активность ила происходит вспухание его из-за интенсивного развития нитчатых форм бактерий. По степени токсичности тяжелые металлы можно расположить в следующем порядке: . Соли этих металлов снижают скорость очистки. Допустимая концентрация токсичных веществ, при которой возможно биологическое окисление, зависит от природы этих веществ. В тех случаях, когда сточные воды содержат несколько видов токсичных веществ, расчет очистных сооружений ведут по наиболее сильнодействующим из них.

Абсорбция и потребление кислорода. Для окисления органических веществ микроорганизмам необходим кислород, но они могут использовать его только в растворенном в воде виде. Для насыщения сточной воды кислородом проводят процесс аэрации, разбивая воздушный поток на пузырьки, которые, по возможности, равномерно распределяют в сточной воде. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных элементов и микроэлементов:N, S, P, K, Mg, Ca, Na, Cl, Fe, Mn, Mo, Ni, Co, Zn, Cu и др.Среди этих элементов основными являются N, Р и K, которые при биохимической очистке должны присутствовать в необходимых количествах. Содержание остальных элементов не нормируется, так как их в сточных водах достаточно.

Недостаток азота тормозит окисление органических загрязнителей и приводит к образованию труднооседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является основной причиной вспуханий активного ила, плохого оседания и выноса его из очистных сооружений, замедления роста ила и снижения интенсивности окисления.

При нехватке азота, фосфора и калия в сточную воду вводят различные азотные, фосфорные и калийные удобрения. Соответствующие соединения азота, фосфора и калия содержатся в бытовых сточных водах, поэтому при их совместной очистке с промышленными стоками добавлять биогенные элементы не надо.

2. Очистка в природных условиях

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях. В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах. Искусственными сооружениями являются аэротенки и биофильтры разной конструкции. Тип сооружений выбирают с учетом местоположения завода, климатических условий, источника водоснабжения, объема промышленных и бытовых сточных вод, состава и концентрации загрязнений. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

2.1 Поля орошения

Это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

Земледельческие поля орошения имеют следующие преимущества перед аэротенками:

1) снижаются капитальные и эксплуатационные затраты;

2) исключается сброс стоков за пределы орошаемой площади;

3) обеспечивается получение высоких и устойчивых урожаев сельскохозяйственных растений;

4) вовлекаются в сельскохозяйственный оборот мало продуктивные земли.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта микробиальную пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения. В глубокие слои почвы проникание кислорода затруднено, поэтому наиболее интенсивное окисление происходит в верхних слоях почвы (0,2-0,4 м). При недостатке кислорода в прудах начинают преобладать анаэробные процессы.

Поля орошения лучше устраивать на песчаных, суглинистых и черноземных почвах. Грунтовые воды должны быть не выше 1,25 м от поверхности. Если грунтовые поды залегают выше этого уровня, то необходимо устраивать дренаж.

[принимают равными 5-20 м 3 (га*сут)]

B зимнее время сточную воду направляют только на резервные поля фильтрации. Так как в этот период фильтрация сточной воды или прекращается полностью или замедляется, то резервное поле фильтрации проектируют с учетом площади намораживания Fн (в м 2):

где Q - расход сточных вод, м 3 /сут; Tн - число дней намораживания; ? - коэффициент, характеризующий величину зимней фильтрации; hн и hо - высоты слоев соответственно намораживания и зимних осадков, м; ?л - плотность льда, кг/м 3 .

2.2 Биологические пруды

Представляют собой каскад прудов, состоящий из 3-5 ступеней, через которые с небольшой скоростью протекает осветленная или биологически очищенная сточная вода.

Пруды предназначены для биологической очистки и для доочистки сточных вод в комплексе с другими очистными сооружениями. Различают пруды с естественной или искусственной аэрацией.

Пруды с естественной аэрацией имеют небольшую глубину (0,5-1 м), хорошо прогреваются солнцем и заселены водными организмами.

3. Очистка в искусственных сооружениях

В искусственных условиях очистку проводят в аэротенках или биофильтрах.

3.1 Очистка в аэротенках

Аэротенками называют железобетонные аэрируемые резервуары. Процесс очистки в аэротенке идет по мере протекания через него аэрированной смеси сточной воды и активного ила (рис. 1). Аэрация необходима для насыщения воды кислородом и поддержания ила во взвешенном состоянии.

Рис. 1. Схема установки для биологической очистки: 1 - первичный отстойник; 2 - предаэратор; 3 - аэротенк; 4 - регенератор; 5 - вторичный отстойник

Перед аэротенком сточная жидкость должна содержать не более 150 мг/л взвешенных частиц и не более 25 мг/л нефтепродуктов. Температура очищаемых сточных вод не должна быть ниже 6°С и выше 30°С, а pH - в пределах 6,5-9.

Аэротенк представляет собой открытый бассейн, оборудованный устройствами для принудительной аэрации. Они бывают двух-, трех- и четырехкоридорные.

Глубина аэротенков 2-5 м.

Наиболее распространены коридорные аэротенки, работающие как вытеснители, смесители и с комбинированными режимами.

Схемы аэротенков с различной структурой потоков сточной воды и возвратного активного ила показаны на рис. 2.

Рис. 2. Аэротенки с различной структурой потоков сточной воды и возвратного активного ила: а - аэротенк-вытесннтель; б- аэротенк-смеситель; в-аэротенк с рассредоточенной подачей сточной воды

3.2 Аэрация

Растворимость кислорода в воде мала (зависит от температуры и давления), поэтому для насыщения ее кислородом подают большое количество воздуха.

Растворимость кислорода в чистой воде при давлении 0,1 МПа представлена ниже:

Температура, °С 5 10 12 14 16 18 20 22 24 26 28

Растворимость, 12,8 11,3 10,8 10,3 9,8 9,4 9,0 8,7 8,3 8,0 7,7

При аэрации должна быть обеспечена большая поверхность контакта между воздухом, сточной водой и илом, что является необходимым условием эффективной очистки. На практике используют пневматический, механический и пневмомеханический способы аэрации сточной воды в аэротенках.

Продолжительность аэрации в аэротенках всех типов равна

x-(Lа-L?)/,

где La и L? - БПКполн поступающей на очистку воды и очищенной воды, мг О2/л; а - доза ила, г/л; Sл - зольность ила в долях единицы; ? - средняя расчетная скорость окисления, мг БПКполн/г беззольного вещества ила в 1 ч.

3.3 Очистка в биофильтрах

Биофильтры - сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов. Микроорганизмы биопленки окисляют органические вещества, используя их как источники питания и энергии. Таким образом, из сточной воды удаляются органические вещества, а масса активной биопленки увеличивается. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра.

В качестве загрузки используют различные материалы с высокой пористостью, малой плотностью и большой удельной поверхностью: щебень, гравий, шлак, керамзит, керамические и пластмассовые кольца, кубы, шары, цилиндры, шестигранные блоки; металлические и пластмассовые сетки, скрученные в рулоны.

Рис. 3. Схемы установок для очистки сточных вод биофильтрами: а - одноступенчатая; б - двухступенчатая; 1 - первичные отстойники; 2,4 - биофильтры 1 и 2 ступеней; 3 - вторичные отстойники; 5 - третичный отстойник

Биофильтры с капельной фильтрацией имеют низкую производительность, но обеспечивают полную очистку. Гидравлическая нагрузка их равна 0,5-3 м 3 /(м 2 сут). Их используют для очистки вод до 1000 м 3 /сут при БПК не более 200 мг/л. Высоконагружаемые биофильтры работают при гидравлической нагрузке 10- 30 м 3 /(м 2 сут), т. е. очищают в 10-15 раз больше сточной воды, чем капельные. Однако они не обеспечивают полную биологическую очистку.

Для лучшего растворения кислорода производят аэрацию. Объем воздуха, подаваемого в биофильтр, не превышает 16 м 3 на 1 м 3 сточной воды. При БПК20>ЗОО мг/л обязательна рециркуляция очищенной воды.

Башенные биофильтры применяют для очистных сооружений производительностью до 5000 м 3 /сут.

Рис. 4. Биотенк-биофильтр (1 - корпус; 2 - элементы загрузки)

4. Анаэробные методы биохимической очистки

Анаэробные методы обезвреживания используют для сбраживания осадков, образующихся при биохимической очистке производственных сточных вод, а также как первую ступень очистки очень концентрированных промышленных сточных вод (БПКполн?4-5 г/л), содержащих органические вещества, которые разрушаются анаэробными бактериями в процессах брожения. В зависимости от конечного вида продукта различают следующие виды брожения: спиртовое, пропионовокислое, молочнокислое, метановое и др. Конечными продуктами брожения являются: спирты, кислоты, ацетон, газы брожения (CO2, H2, CH4).

Для очистки сточных вод используют метановое брожение. Этот процесс очень сложный и многостадийный. Механизм его окончательно не установлен. Считают, что процесс метанового брожения состоит из двух фаз: кислой и щелочной (или метановой). В кислой фазе из сложных органических веществ образуются низшие жирные кислоты, спирты, аминокислоты, аммиак, глицерин, ацетон, сероводород, диоксид углерода и водород. Из этих промежуточных продуктов в щелочной фазе образуются метан и диоксид углерода. Предполагается, что скорости превращений веществ в кислой и щелочной фазах одинаковы.

Основная реакция метанообразования может быть записана уравнением (Н2А - органическое вещество, содержащее водород):

СО2 + 4Н2А - СН4+4А+2Н2О.

Процесс брожения проводят в метантенках - герметически закрытых резервуарах, оборудованных приспособлениями для ввода несброженного и отвода сброженного осадка. Схема метантенка показана на рис. 5. Перед подачей в метантенк осадок должен быть по возможности обезвожен.

Рис. 5. Метантенк: 1 - корпус; 2 - труба; 3 - мешалка; 4 - змеевик

очистка сточный вода аэрация

Основными параметрами аэробного сбраживания являются температура, регулирующая интенсивность процесса, доза загрузки осадка и степень его перемешивания. Процессы сбраживания ведут в мезофильных (30-35°С) и термофильных (50-55°С) условиях. Полного сбраживания органических веществ в метантенках достичь нельзя. Все вещества имеют свой предел сбраживания, зависящий от их химической природы. В среднем степень распада органических веществ составляет около 40%.

При сбраживании выделяются газы, которые в среднем содержат 63-65% метана, 32-34% СО2. Теплотворная способность газа 23 МДж/кг. Его сжигают в топках паровых котлов. Пар используют для нагрева осадков в метантенках или для других целей.

5. Обработка осадков

В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо утилизировать или обрабатывать с целью уменьшения загрязнения биосферы.

Эти операции весьма затруднены, поскольку осадки имеют разный состав и большую влажность.

Их подразделяют на три группы:

1) осадки в основном минерального состава;

2) осадки в основном органического состава;

3) смешанные осадки, содержащие как минеральные, так и органические вещества.

Осадки характеризуются содержанием сухого вещества (в г/л или в %); содержанием беззольного вещества (в % от массы сухого вещества); элементным составом; кажущейся вязкостью и текучестью; гранулометрическим составом.

Как правило, осадки сточных вод представляют собой труднофильтруемые суспензии. Во вторичных отстойниках в осадке находится в основном избыточный активный ил, объем которого в 1,5-2 раза больше, чем объем осадка из первичного отстойника.

В осадках содержится свободная и связанная вода. Свободная вода (60-65%) сравнительно легко может быть удалена из осадка, связанная вода (30-35%) - коллоидно-связанная и гигроскопическая - гораздо труднее. Коллоидно-связанная влага обволакивает твердые частицы гидратной оболочкой и препятствует их соединению в крупные агрегаты. Некоторое количество этой влаги удаляется из осадка после коагуляции в процессе фильтрования.

5.1 Уплотнение активного ила

Уплотнение осадков связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении в среднем удаляется 60% влаги, и масса осадка сокращается в 2,5 раза. Наиболее трудно уплотняется активный ил. Влажность активного ила составляет 99,2-99,5%. Взвешенные частицы ила имеют небольшой размер и плотную гидратную оболочку, которая препятствует уплотнению частиц. Уплотнение активного ила сопровождается ростом удельного сопротивления при фильтровании.

Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

Гравитационный метод уплотнения является наиболее распространенным и применяется для уплотнения избыточного активного ила и сброженных осадков. Он основан на оседании частиц дисперсной фазы. В качестве илоуплотнителей используют вертикальные или радиальные отстойники. Наибольшее распространение имеют илоуплотнители радиального типа, так как в них получается активный ил более высокой концентрации при меньшей длительности уплотнения.

Гравитационное уплотнение не эффективно: наблюдается высокая концентрация взвешенных веществ в отделяемой воде и большая влажность уплотненных осадков, что удорожает последующую их обработку.

Флотационный метод уплотнения осадков основан на прилипании частиц активного ила к пузырькам воздуха и всплывании вместе с ними на поверхность. Для образования пузырьков воздуха может быть использован метод напорной флотации, вакуум-флотации, электрофлотации и биологической флотации (за счет развития и жизнедеятельности микроорганизмов при подогреве осадка до 35-55°С). Достоинства метода состоят в сокращении продолжительности процесса и более высокой степени уплотнения.

Рис. 5. Схема установки уплотнения флотацией активного ила от обработки городских сточных вод: 1 - первичный отстойник; 2 - аэротенк; 3 - вторичный отстойник; 4 - уплотнитель осадка из первичного отстойника; 5 - флотатор; 6 - емкость для уплотненного ила

5.2 Стабилизация осадков

Этот процесс проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизацию ведут при помощи микроорганизмов в анаэробных и аэробных условиях. В анаэробных условиях проводится сбраживание в септиках, двухъярусных отстойниках, осветлителях-перегнивателях и метантенках. Септики и отстойники используют на установках небольшой производительности. Наиболее широкое распространение получили метантенки, рассмотренные ранее.

Аэробная стабилизация заключается в продолжительной обработке ила в аэрационных сооружениях с пневматической, механической или пневмомеханической аэрацией. В результате такой обработки происходит распад (окисление) основной части биоразлагаемых органических веществ (до СО2, Н2О и NH3). Оставшиеся органические вещества становятся неспособными к загниванию, т.е. стабилизируются. Расход кислорода на процесс стабилизации приблизительно равен 0,7 кг/кг органического вещества.

Недостаток процесса по сравнению со сбраживанием - высокие затраты на аэрирование.

5.3 Обезвоживание осадков

Осадки обезвоживают на иловых площадках и механическим способом.

Иловые площадки - это участки земли (корты), со всех сторон окруженные земляными валами. Если почва хорошо фильтрует воду и грунтовые воды находятся на большой глубине, иловые площадки устраивают на естественных грунтах. При залегании грунтовых вод на глубине до 1,5 м фильтрат отводят через специальный дренаж из труб, а иногда делают искусственное основание. Рабочая глубина площадок - 0,7-1 м. Площадь иловых площадок зависит от количества и структуры осадка, характера грунта и климатических условий. Иловую воду после уплотнения направляют на очистные сооружения.

В районах с теплым климатом для очистных сооружений производительностью более 10000 могут быть оборудованы площадки с поверхностным удалением воды. Они представляют собой каскад из 4-8 площадок.

Литература

1. Акимова Т.В. Экология. Человек-Экономика-Биота-Среда: Учебник для студентов вузов / Т.А. Акимова, В.В. Хаскин; 2-е изд., перераб. и дополн. - М.: ЮНИТИ, 2009. - 556 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

2. Акимова Т.В. Экология. Природа-Человек-Техника: Учебник для студентов техн. направл. и специал. Вузов / Т.А. Акимова, А.П. Кузьмин, В.В. Хаскин. - Под общ. ред. А.П. Кузьмина; Лауреат Всеросс. конкурса по созд. новых учебников по общим естественнонауч. дисципл. для студ. вузов. М.: ЮНИТИ-ДАНА, 2006. - 343 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

3. Бродский А.К. Общая экология: Учебник для студентов вузов. М.: Изд. Центр "Академия", 2006. - 256 с. Рекомендован Минобр. РФ в качестве учебника для бакалавров, магистров и студентов вузов.

4. Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2006. - 424 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

5. Коробкин В.И. Экология: Учебник для студентов вузов / В.И. Коробкин, Л.В. Передельский. -6-е изд., доп. И перераб. - Ростон н/Д: Феникс, 2007. - 575 с. Лауреат Всеросс. конкурса по созд. новых учебников по общим естественнонауч. дисципл. для студ. вузов. Рекомендовано Минобр. РФ в качестве учебника для студентов вузов.

6. Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экорлогия. 2-е изд. Учебник для вузов. М.: Дрофа, 2008. - 624 с. Рекомендован Минобр. РФ в качестве учебника для студентов технич. вузов.

7. Стадницкий Г.В., Родионов А.И. Экология: Уч. пособие для стут. химико-технол. и техн. сп. вузов. / Под ред. В.А. Соловьева, Ю.А. Кротова.- 4-е изд., испр. - СПб.: Химия, 2007. - 238 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

8. Одум Ю. Экология т.т. 1, 2. Мир, 2006.

9. Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов / Н.М. Чернова, А.М. Былова. - М.: Дрофа, 2008. - 416 с. Допущено Минобр. РФ в качестве учебника для студентов высших педагогических учебных заведений.

10. Экология: Учебник для студентов высш. и сред. учеб. заведений, обуч. по техн. спец. и направлениям / Л.И. Цветкова, М.И. Алексеев, Ф.В. Карамзинов и др.; под общ. ред. Л.И. Цветковой. М.: АСБВ; СПб.: Химиздат, 2007. - 550с.

11. Экология. Под ред. проф. В.В. Денисова. Ростов-н/Д.: ИКЦ "МарТ", 2006. - 768 с.

Размещено на Allbest.ru

...

Подобные документы

    Механическая очистка сточных вод на канализационных очистных сооружениях. Оценка количественного и качественного состава, концентрации загрязнений бытовых и промышленных сточных вод. Биологическая их очистка на канализационных очистных сооружениях.

    курсовая работа , добавлен 02.03.2012

    Эффективность процесса биохимической очистки сточных вод, концентрация активного ила. Использование технического кислорода для аэрации. Биоадсорбционный способ биологической очистки. Использование мутагенеза, штаммов и адаптированных микроорганизмов.

    контрольная работа , добавлен 08.04.2015

    Очистка промышленных сточных вод с использованием электрохимических процессов и мембранных методов (ультрафильтрация, нанофильтрация, обратный осмос). Новые изобретения для очистки и обеззараживания коммунально-бытовых и сельскохозяйственных сточных вод.

    курсовая работа , добавлен 09.12.2013

    Анализ полной биологической очистки хозяйственно–бытовых сточных вод поселка городского типа. Технологическая схема биологической очистки стоков и ее описание. Расчет аэротенка-вытеснителя с регенератором, технологической схемы очистки сточных вод.

    дипломная работа , добавлен 19.12.2010

    Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа , добавлен 04.10.2009

    Понятие, принципы и возможные методы очистки сточных вод, особенности их бытовых, производственных и поверхностных видов. Общая характеристика используемых систем очистки, их эффективность. Проблемы и нарушения при очистке бытовых и промышленных стоков.

    реферат , добавлен 08.11.2011

    Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа , добавлен 30.05.2014

    Состав сточных вод. Характеристика сточных вод различного происхождения. Основные методы очистки сточных вод. Технологическая схема и компоновка оборудования. Механический расчет первичного и вторичного отстойников. Техническая характеристика фильтра.

    дипломная работа , добавлен 16.09.2015

    Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация , добавлен 24.04.2014

    Состав сооружений, расположенных на окраине п. Белый Яр и технологическая схема. Количественная и качественная характеристика стоков. Зарубежный опыт использования искусственных водно-болотных экосистем для очистки сточных вод в условиях холодного климата

Биохимический метод используется для очистки хозяйственно-бытовых и промышленных сточных вод (СВ) от растворенных органических и некоторых неорганических веществ (H 2 S, сульфиды, аммиак, нитриты и др.). Процессоснован на способности микроорганизмов использовать эти вещества для питания в процессе жизнедеятельности – органические вещества для микроорганизмов являются источником углерода.

Основные показатели процесса.

БПК – биохимическая потребность в кислороде или количество кислорода, используемое при биохимических процессах окисления органических веществ (не включая процессы нитрификации) за определенный промежуток времени (2, 5, 8, 10, 20 сут) в мгО 2 на 1 мг вещества. (БПК 5 – БПК за 5 суток).

ХПК – химическая потребность в кислороде, т. е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде, мгО 2 /1 мг вещества.

При контакте с органическими веществами микроорганизмы частично разрушают их, превращая в воду, СО 2 , нитрит- и сульфат-ионы. Другая часть вещества идет на образование биомассы – процесс биохимического окисления.

При сбросе СВ на биохимические очистные сооружения должны соблюдаться следующие требования:

Концентрации токсичных веществ должны быть не выше максимально установленных, не влияющих на процессы биохимического окисления (МК б) и на работу очистных срооружений (МК б.о.с.), или БПК/ХПК0,5;

СВ не должны содержать ядовитые вещества и соли тяжелых металлов;

Неорганические вещества, не поддающиеся окислению, должны иметь концентрации максимально установленных (МК б (Cu) – 0,5 мг/л; (Hg) – 0,02 мг/л; (Pb) – 0,1 мг/л и т. д.).

Биохимическиеметоды

Анаэробные Без доступа О 2

Состав активного ила и биопленки.

Активный ил (АИ) - живые организмы + твердый субстрат

Сообщество живых организмов (скопления и одиночные бактерии, простейшие, черви, плесневые грибы, дрожжи; редко – личинки насекомых, рачков, а также водоросли и др.) – биоценоз, представлен, в основном, 12 видами микроорганизмов и простейших.

Скопление бактерий в АИ окружены слизистым слоем (капсулами). Такие скопления называются зоогелями . Слизистые вещества содержат антибиотики, способные подавлять нитчатые бактерии. Бактерии, лишенные слизистого слоя, с меньшей скоростью окисляют загрязнения.

В АИ находятся организмы различных групп, их возникновение зависит от состава СВ, содержания в них О 2 , температуры, рН, содержания солей и т. д.

По экологическим группам микроорганизмы (разрушают органические вещества) делятся:



2. анаэробы

3. термофилы

4. мезофилы

5. галофилы

6. галофобы

Простейшие (органические вещества не разрушают, поддерживают баланс бактерий или питаются ими):

1. сардиковые

2. жгутиковые

3. реснитчатые

4. сосущие инфузории

При образовании АИ сначала появляются бактерии, затем простейшие.

АИ – буровато-желтые комочки и хлопья, размер – 3-150 мкм. Поверхность хлопьев 1200м 2 /1м 3 ила (100 м 2 /1г сухого вещества). В 1м 3 АИ – 2*10 14 бактерий.

Биопленка растет на носителе биофильтра; имеет вид слизистых обрастаний размером 1-2мм и более. Цвет зависит от состава СВ – от светло-желтого до темно-коричневого.

Состав : бактерии, грибы, дрожжи и др., простейшие, коловратки, черви (разнообразнее, чем в АИ). Личинки комаров и мух, черви и клещи поедают АИ и биопленку, вызывая их рыхление, что способствует процессу очистки. Число микроорганизмов в биопленке меньше, чем в АИ, в 1м 3 биопленки - 2*10 12 бактерий.

Закономерности распада органических веществ.

Органические вещества при помощи специфического белка – переносчика (он образует с органическими веществами растворимый комплекс) проходят через мембрану в клетку микроорганизма, комплекс разрушается, белок-переносчик включается в новый цикл переноса, а внутри клетки происходят превращения, заканчивающиеся окислением вещества с выделением энергии и синтезом новых веществ с затратой этой энергии.

Этот процесс непрерывен и очень сложен, протекают в строгой последовательности с большой скоростью множество реакций, что определяется ферментами (катализаторы биохимических реакций). Каждую реакцию катализирует определенный фермент, содержащийся в клетке.

Вещества, повышающие активность ферментов (активаторы): витамины, Са 2+ , Мg 2+ , Mn 2+ .

Ингибиторы: соли тяжелых металлов, синильная кислота, антибиотики.

Суммарные реакции биохимического окисления в аэробных условиях:

CxHyOzN +(x+y/4+z/3+3/4)O 2 ферменты xCO 2 +(y-3)/2H 2 O+NH 3 +H (1)

CxHyOzN +NH 3 + O 2 ферменты C 5 H 7 NO 2 +CO 2 +H (2)

Реакция (1) – удовлетворение энергетических потребностей клетки

Реакция (2) – для синтеза клеточного вещества.

C 5 H 7 NO 2 +5O 2 ферменты 5 CO 2 +NH 3 +2H 2 O+H

NH 3 + O 2 ферменты HNO 2 + O 2 ферменты HNO 3

CxHyOzN – все органические вещества СВ

C 5 H 7 NO 2 – среднее соотношение основных элементов в клеточном веществе бактерий

H – энергия.

Живые организмы могут использовать только химически связанную энергию, универсальный ее переносчик в клетке – аденозитрифосфорная кислота (АТФ), образующаяся в ходе реакции с аденозиндифосфорной кислотой (АДФ):

АДФ+Н 3 РО 4 АТФ+Н 2 О

Метаболизм некоторых веществ.

СН 4 СН 3 ОН НСНО НСООН СО 2

Нитрификация и денитрификация .

Нитрифицирующие бактерии окисляют азот аммонийных соединений сначала до NO 2 - NO 3 - - процесс нитрификации

NH 4 + O 2 ферменты HNO 2 + O 2 ферменты HNO 3

Денитрифицирующие бактерии отщепляют связанный кислород от нитритов и нитратов и вновь расходуют его на окисление органических веществ – процесс денитрификации.

NH 2 OH NH 3 (редко)

NO 3 - NO 2 - NO

Окисление серосодержащих веществ.

Сера, H 2 S, тиосульфаты, политионаты и др. соединения серные бактерии окисляют до H 2 SO 4 и сульфатов.

Процесс интенсифицируется в присутствии:N, P, K, небольшого количества Fe, Mg, Zn, B, Mn.

Окисление Fe и Mn.

Железобактерии получают энергию, окисляя Fe 2+ до Fe 3+

4FeCO 3 +O 2 +6H 2 O 4Fe(OH) 3 +4CO 2 +H

Mn 2+ +1/2 O 2 +2OH - MnO 2 +H 2 O

Аэробная очистка:

В природных условиях

В искусственных сооружениях

В природных условиях:

На полях орошения

На полях фильтрации

В биологических прудах

Поля орошения (ПО) – специально подготовленные земельные участки, используемые для очищения СВ и агрокультурных целей. Очистка СВ идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

В почве ПО находятся бактерии, дрожжи, грибы, водоросли, простейшие и беспозвоночные животные (их количество зависит от времени года).

Поля фильтрации – используются только для биологической очистки СВ без выращивания на них сельскохозяйственных культур.

Преимущества очистки в природных условиях:

Снижаются капитальные и эксплуатационные затраты

Исключается сброс стоков за пределы орошаемой площади

Обеспечивается получение высоких и устойчивых урожаев с/х растений

Вовлекаются в с/х оборот малопродуктивные земли.

Поля орошения лучше устраивать на песчаных, суглинистых и черноземных почвах. Грунтовые воды должны быть не выше 1,25 м от поверхности. Если грунтовые воды залегают выше этого уровня, то необходимо устраивать дренаж.

Варианты естественной биохимической очистки СВ см. на рис. 50.

Биологические пруды – каскад прудов, состоящих из 3 – 5 ступеней, через которые с небольшой скоростью протекает осветленная или биологически очищенная СВ.

Пруды предназначены для биологической очистки и доочистки СВ в комплексе с другими очистными сооружениями. Пруды бывают с естественной и искусственной аэрацией.

Бактерии используют для окисления кислород, выделяемый водорослями в процессе фотосинтеза, а также О 2 из воздуха. Водоросли потребляют СО 2 , фосфаты и аммонийный азот, выделяющиеся при биохимическом разложении органических веществ. Tемпература, при которой происходят процессы очистки в прудах 6 0 С, зимой пруды не работают.

Для искусственной аэрации используют компрессоры низкого давления, при этом происходит перемешивание воды.

Очистка в искусственных условиях:

В аэротенках

В биофильтрах

Очистка в аэротенках :

Аэротенки – железобетонные аэрируемые резервуары. Процесс очистки в аэротенке происходит по мере протекания через него аэрируемой смеси сточной воды и активного ила.

Аэрация нужна для насыщения воды О 2 и поддержания ила во взвешенном состоянии.

Биохимические процессы в аэротенке:

а) адсорбция поверхностью активного ила органических веществ и минерализация легко окисляющихся веществ при интенсивном потреблении кислорода;

б) доокисление медленно окисляющихся органических веществ, регенерация активного ила (кислород при этом потребляется медленнее).

Перед аэротенками СВ должны содержать не более 150 мг/л взвешенных веществ и не более 25 мг/л нефтепродуктов, 6 0 Сt30 0 С,рН = 6,5-9.

Аэротенк состоит из регенератора (25% от объема) и собственно аэротенка.

После контактирования СВ с илом поступает во вторичный отстойник, где ил отделяется от воды. Большую его часть возвращают в аэротенк, а избыток – в преаэратор.

Аэротенк – открытый бассейн с устройством принудительной аэрации (глубина до 2 – 5 м).

Аэротенки классифицируют :

1)по гидродинамическому режиму

Аэротенк-вытеснитель

Аэротенк-смеситель

Аэротенк промежуточного типа

2)по способу регенерации АИ

С отдельной регенерацией

Без отдельной регенерации

3) по нагрузке на АИ

Высоконагружаемые (для неполной очистки)

Обычные (низконагружаемые с продленной аэрацией)

4) по количеству ступеней

5) по режима ввода СВ

Проточные

Полупроточные

С переменным рабочим уровнем и контактные

6) по конструктивным признакам.



иловая смесь


Рис. Аэротенки с различной структурой потоков СВ и возвратного активного ила:

а) аэротенк-вытеснитель

б) аэротенк-смеситель

в) аэротенк с рассредоточенной подачей СВ

а) используют для малоконцентрированных вод (до 300мг/л по БПКполн)

б) для концентрированных вод с БПКполн до 1000мг/л

Одноступенчатые схемы без регенерации ила используют при БПКполн150 мг/л, с регенерацией >150 мг/л и при наличие вредных производственных примесей.

Двухступенчатые схемы – для очистки высококонцентрированных СВ.

Аэрация .

Методы: а) пневмотический

б) механический

в) пневмомеханический

а) сжатый воздух воздуходувной подают через пористые керамические плиты (фильтросы, пористые и перфорированные трубы)

б) перемешивание жидкости различными устойствами, обеспечивающее дробление струй воздуха. Вблизи этих устройств возникают пузырьки газа, при помощи которого О 2 переходит в СВ

в) сжатый воздух поступает через аэрационное кольцо с большими отверстиями и разбивается на мелкие пузырьки. Используют, когда необходимо интенсивное перемешивание и высокая окислительная мощность.

Продолжительность аэрации:

где и - БПКполн поступающей на очистку и очищенной воды, мгО 2 /л

а – доза ила, г/л

Sл – зольность ила в долях единицы

Т - средняя расчетная скорость окисления мг БПКполг/г беззольного вещества ила в час.

Разные конструкции аэротенков (см. рис. 51).

Для интенсификации процесса биохимической очистки СВ перед аэротенком можно обрабатывать окислителями (О 3) для снижения ХПК.

Есть схемы, где для отделения активного ила используют не отстойники, а флотаторы.

Использование флотатора позволяет повысить концентрацию активного ила в аэротенке до 10 – 12 г/л и увеличить его производительность в 2 – 3 раза.

Биофильтры .

Биофильтры – это сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для СВ.

СВ фильтруются через слой загрузки, покрытый пленкой микроорганизмов, которые окисляют органические вещества, используя их как источник питания и энергии.

Из СВ удаляются органические вещества, а масса биопленки повышается. Отработанная (омертвевшая) биопленка смывается протекающей СВ и выносится из биофильтра.

Керамзит;

Керамические и пластмассовые кольца;

Кубы, шары, цилиндры, шестигранные блоки;

Металлические и пластмассовые сетки, скрученные в рулоны.

Биофильтры:

а) – с полной биологической очисткой;

С неполной биологической очисткой;

б) – с естественной подачей воздуха;

С искусственной подачей воздуха;

в) – с рециркуляцией СВ;

Без рециркуляции СВ;

г) – одноступенчатые;

Двухступенчатые;

д) – капельные;

Высоконагружаемые

Схемы установок для очистки СВ биофильтрами (рис. 52)


СВ

Очищенная вода


СВ очищенная

Рис.52 Схемы установок для очистки СВ биофильтрами

а) – одноступенчатая

б) – двухступенчатая

1 – первичные отстойники

2,4 – биофильтры I и II ступеней

3 – вторичные отстойники

5 – третичные отстойники.

Биопленка выполняет те же функции, что и активный ил: адсорбируют и перерабатывают биологические вещества. Окислительная мощность биофильтров ниже мощности аэротенков.

На эффективность очистки СВ влияют:

БПК очищенной воды

Природа органических загрязнений

Скорость окисления

Интенсивность дыхания микроорганизмов

Масса веществ, адсорбируемых пленкой

Толщина биопленки

Состав обитающих в биопленке микроорганизмов

Интенсивность аэрации

Площадь и высота биофильтра

Характеристика загрузки (размер кусков, пористость, удельная поверхность)

Физические свойства СВ (температура, гидравлическая нагрузка, интенсивность рециркуляции, равномерность распределения СВ по сечению загрузки, степень смачиваемости биопленки).

Двухъярусные биофильтры применяют, когда для достижения высокой степени очистки нельзя увеличить высоту биофильтров.

Биофильтры с капельной фильтрацией обеспечивает полную очистку, но имеют низкую производительность (0,5 – 3 м 3 /м 2 сутки). БПК очищаемой воды 200мг О 2 /л.

Высоконагружаемые биофильтры – производительность 10 – 30 м 3 /м 2 сутки, но не обеспечивает полную биологическую очистку. Используют аэрацию (16 м 3 воздуха/1 м 3 СВ). при БПК 20 > 300мг/л – рециркуляция очищенной воды.

Башенные биофильтры – производительность до 5000 м 3 /сутки.

Биотенк-биофильтр – корпус с расположенными в шахматном порядке элементами загрузки, которую представляют собой полуцилиндры диаметром 80мм. СВ поступает сверху, наполняя элементы загрузки, и через края стекает вниз. На наружных поверхностях элементов образуется биопленка, а в элементах – биомасса, похожая на активный ил. Насыщение воды О 2 происходит при движении жидкости.

Аппараты с псевдоожиженным слоем .

Колонна с псевдоожиженным слоем зернистого материала (песка), на поверхности которого культивируются микроорганизмы. СВ предварительно насыщают О 2 и подают в колонку снизу вверх со скоростью 25 – 60 м/час.

Поверхность загрузки – 3200 м 2 /м 3 (в 20 раз больше, чем в аэротенках, в 40 раз больше, чем в биофильтре).

Процессы протекают очень быстро: БПК СВ снижается на 85 – 90% за 15 минут (в аэротанке – за 6 – 8 часов).

Окситенки.

Биохимическая очистка СВ с применением вместо воздуха технического кислорода – «биоосаждение» осуществляется в окситенках.

Использование О 2 вместо воздуха позволяет:

  1. повысить эффективность использования О 2 с 8 – 9 до 90 - 95%
  2. повысить окислительную мощность по сравнению с аэротенками в 5-6 раз
  3. снизить скорость перемешивания СВ (это улучшает осаждение ила, т. к. не разрушаются крупные хлопья)
  4. улучшить бактериальный состав активного ила (при высоких концентрациях О 2 не развиваются ниточные бактерии)
  5. повышается содержание О 2 в очищенной воде, что способствует ее дальнейшей доочистке
  6. избежать неприятных запахов, т. к. окситенки – закрытые герметичные аппараты
  7. капитальные затраты ниже (в случае, если О 2 – отход производства)

Конструкции окситенков:

1. комбинированные (реакторы-смесители)

2. секционные окситенки – вытеснители с отдельным вторичным отстойником.

Основная реакция:

СО 2 +4Н 2 А СН 4 +4А+2Н 2 О

Н 2 А – органическое вещество, содержащее Н

5АН 2 +SО 4 2- 5А+Н 2 S+4Н 2 О

Денитрификация:

6АН 2 +2nО 3 - 6А+6Н 2 О+n 2 (nО 3)

Брожение осуществляют в метантенках - аппарат, герметично закрытый, оборудованный приспособлениями для ввода несброженного и вывода сброженного осадка. (рис.54)

Перед подачей осадок должен быть обезвожен.

Параметры анаэробного сбраживания :

Температура, регулирующая интенсивность процесса

Степень перемешивания.

Сбраживание в мезофильных (30 –35 0 С) и термофильных (50 - 55 0 С) условиях.

Степень распада органических веществ 40%.

Степень распада органических веществ может повыситься за счет поддержания:

  1. высокой температуры
  2. концентрации беззольного вещества > 15г/л
  3. интенсивного перемешивания
  4. рН=6,8-7,2
  1. присутствие солей тяжелых металлов
  2. избыток nН 4
  3. присутствие сульфидов и некоторых др.

Брожение ведут в 2 стадии, при этом часть осадка из второго метантенка возвращают в первый, в первом – хорошее перемешивание.

Выделяющийся газ: 63 – 65% СН 4 , 32 - 34% СО 2 , теплотворная способность 23 МДж/кг снижают в топках паровых котловиспользуют для нагрева осадков в метантенках и для других целей.

Биохимическая очистка сточных вод (биологическая очистка) - основной способ очистки сточных вод, содержащих загрязнения органического происхождения, заключающийся в минерализзции этих загрязнений вследствие жизнедеятельности микроорганизмов.

Биологическая очистка сточных вод - один из самых распространенных способов обезвреживания сточных вод при подготовке их к спуску в водоемы, основанный на микробиальных (под воздействием микробов) процессах распада и минерализации органических веществ. По существующим нормам, содержание органических веществ в очищенной воде не должно превышать 10 мг/л.

В минерализации органических соединений сточных вод участвуют бактерии, которые по своему отношению к кислороду разбиваются на 2 группы:

Аэробные (использующие при дыхании растворенный в воде кислород);

Анаэробные (развивающиеся в отсутствии свободного кислорода).

Аэробный процесс

С 6 Н 12 О 6 +6О 2 --> 6СО 2 +6Н 2 О + микробная биомасса + тепло

Анаэробный процесс

С 6 Н 12 О 6 --> 3СН 4 + 3СО 2 + микробная биомасса + тепло

Аэробное микробное сообщество представлено разнообразными микроорганизмами, в основном бактериями, окисляющими различные органические вещества в большинстве случаев независимо друг от друга, хотя окисление некоторых веществ осуществляется путем соокисления (кометаболизм). Аэробное микробное сообщество активного ила систем аэробной очистки воды представлено исключительным биоразнообразием. Продуктами жизнедеятельности микробов являются углекислота, водород, органические кислоты и спирты.

Рис. 2.48. Сравнение материального и энергетического балансов методов аэробной и анаэробной очистки сточных вод.

Преимуществом аэробной очистки является высокая скорость и использование веществ в низких концентрациях. Существенными недостатками, особенно при обработке концентрированных сточных вод, являются высокие энергозатраты на аэрацию и проблемы, связанные с обработкой и утилизацией больших количеств избыточного ила. Аэробный процесс используется при очистке бытовых, некоторых промышленных и свиноводческих сточных вод с ХПК не выше 2000. Преимуществом анаэробного процесса является также относительно незначительное образование микробной биомассы. К недостаткам следует отнести невозможность удаления органических загрязнений в низких концентрациях. (рис. 2.48 ).

Деградация органических веществ микроорганизмами в аэробных и в анаэробных условиях осуществляется с разными энергетическими балансами суммарных реакций. При аэробном биоокислении глюкозы 59% энергии, содержащейся в ней, расходуется на прирост биомассы и 41% составляют тепловые потери. Этим обусловлен активный рост аэробных микроорганизмов. Чем выше концентрация органических веществ в обрабатываемых стоках, тем сильнее разогрев, выше скорость роста микробной биомассы и накопления избыточного активного ила. При анаэробной деградации глюкозы с образованием метана лишь 8% энергии расходуется на прирост биомассы, 3% составляют тепловые потери и 89% переходит в метан. Анаэробные микроорганизмы растут медленно и нуждаются в высокой концентрации субстрата.



Необходимыми условиями для жизнедеятельности организмов, способствующих очистке, и эффективного использования аэробных очистных сооружений являются:

Наличие в сточных водах органических веществ, способных окисляться биохимически;

Непрерывное снабжение сооружений кислородом в достаточном количестве;

Активная реакция очищаемой воды (в пределах 7-8,5 рН);

Температура воды не ниже 10°С и не выше 30°С;

Наличие биогенных элементов - азота, фосфора, калия в необходимых количествах;

Отсутствие токсических веществ в концентрациях, ядовито действующих на микроорганизмы.

Биохимическая очистка сточных вод протекает в две одновременно начинающиеся фазы:

Сорбция поверхностью тел бактерий растворенных органических веществ и коллоидов;

Окисление и минерализация растворенных и адсорбированных органических веществ микробами.

Для биохимической очистки бытовых промышленных сточных вод применяются следующие очистные сооружения:

Аэробные - аэрофильтры и аэротенки, биофильтры, биологические пруды, поля орошения, поля фильтрации;

Анаэробные - септики, двухъярусные отстойники, метантенки. Выбор типа сооружений определяется характером и количеством сточных вод, местными условиями, требованиями к качеству очищенной воды, наличием свободных земельных площадей и т. д.

Перед биохимической очисткой из сточных вод необходимо удалить взвешенные вещества, смолы и масла. В результате очистки содержание органических веществ в сточных водах снижается на 90-95%; они теряют способность к загниванию, становятся прозрачными, количество бактерий в них сильно снижается.

Аэробная очистка

Аэротенками называют сооружения для биологической очистки предварительно осветленной сточной жидкости. Процесс очистки протекает в движущемся потоке жидкости при искусственном введении в него так называемого активного ила, а также кислорода воздуха как источника жизнедеятельности бактерий.

Аэротенки представляют собой длинные железобетонные или бетонные резервуары прямоугольного сечения Активный ил - это скопление аэробных микроорганизмов в виде хлопьев - минерализаторов, обладающих также адсорбирующими свойствами и способностью минерализовать органические вещества, находящиеся в очищаемой сточной, жидкости.

Анаэробная очистка

В случае высокой концентрации в сточных водах органических веществ (БПК более 1000 мг/л), а также при очистке бытовых стоков (БПК от 30 до 50 мг/л) как один из наиболее перспективных может рассматриваться анаэробный метод очистки. Его преимущество перед аэробными заключается в резком снижении эксплуатационных расходов (для анаэробных МО не требуется дополнительной аэрации воды) и отсутствии проблем, связанных с утилизацией избыточной биомассы.

Биохимический показатель



Влияние различных факторов на скорость

Биохимического окисления

Скорость окисления зависит от концентрации органических ве­ществ, равномерности поступления сточной воды на очистку и от содержания в ней примесей. При заданной степени очистки основ­ными факторами, влияющими на скорость биохимических реакций, являются концентрация потока, содержание кислорода в сточной воде, температура и рН среды, содержание биогенных элементов, а также тяжелых металлов и минеральных солей.

Турбулизация сточных вод в очистных сооружениях способству­ет повышению скорости очистки. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обес­печивает равномерное распределение его в сточной воде.

Важнейшим свойством активного ила является его способность к оседанию. Свойство оседания описывается величиной илового индекса, представляющего собой объем в мл, занимаемый 1 г ила в его естественном состоянии после 30 мин отстаивания. Плохая оседаемость ила ведет к повышенному выносу его с очищенной водой и ухудшению качества очистки. Доза активного илазависит от илового индекса.



Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температу­ры и рН среды.

Установлено, что с повышением температуры сточной водыско­рость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30 °С. Превышение указанной температу­ры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адап­тации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. Повыше­ние температуры в оптимальных пределах ускоряет процесс разло­жения органических веществ в 2-3 раза. С увеличением температу­ры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.

Активный ил способен сорбировать соли тяжелых металлов. При этом снижается биохимическая активность ила и происходит вспухание его из-за интенсивного развития нитчатых форм бакте­рий.

Отрицательное влияние на скорость очистки может оказать и по­вышение содержания минеральных веществ, находящихся в сточной воде, выше допустимых концентраций.

Перенос кислорода из газовой фазы к клеткам микроорганизмов происходит в два этапа. На первом этапе происходит перенос кисло­рода из воздушных пузырьков в основную массу жидкости, на вто­ром – перенос абсорбированного кислорода из основной массы жид­кости к клеткам микроорганизмов, главным образом, под действием турбулентных пульсаций.

Количество абсорбируемого кислорода может быть вычислено по уравнению массоотдачи:

где М – количество абсорбированного кислорода, кг/с; β V - объем­ный коэффициент массоотдачи, с -1 ; V – объем сточной воды в со­оружении, м 3 ;

с р, с – равновесная концентрация и концентрация кис­лорода в основной массе жидкости, кг/м 3 .

Исходя из уравнения массоотдачи, количество абсорбируемого кислорода может быть увеличено за счет роста коэффициента массоотдачи или движущей силы. Изменения движущей силы воз­можны в результате увеличения содержания кислорода в воздухе, уменьшения рабочей концентрации или повышения давления про­цесса абсорбции. Однако все эти пути или экономически невыгод­ны, или не приводят к значительному росту интенсивности процесса.

Наиболее надежный способ увеличения подачи кислорода в сточ­ную воду – это повышение объемного коэффициента массоотдачи.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных эле­ментов и микроэлементов: N, S, Р, К, Мg, Са, Nа, С1, Fе, Мn, Мо, Ni, Со, Zn, Сu и др. Среди этих элементов основными являются N, Р и К, которые при биохимической очистке должны присутствовать в необходимых количествах. Содержание остальных элементов не нор­мируется, так как их в сточных водах достаточно.

Недостаток азота тормозит окисление органических загрязните­лей и приводит к образованию трудно оседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является ос­новной причиной вспуханий активного ила, плохого оседания и вы­носа его из очистных сооружений, замедления роста ила и снижения интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках: азот – в форме аммонийной группы NН 4 + , а фосфор – в виде солей фосфорных кислот.

При нехватке азота, фосфора и калия в сточную воду вводят раз­личные азотные, фосфорные и калийные удобрения. Соответствую­щие соединения азота, фосфора и калия содержатся в бытовых сточ­ных водах, поэтому при их совместной очистке с промышленными стоками добавлять биогенные элементы не надо.

Конструкции аэротенков

В аэротенке-отстойнике (рис. 17) зона аэрации отделена от зоны отстаивания. Сточная вода подается в центре, а отводится по лотку 1. В зоне отстаивания образуется слой взвешенного активного ила, через который фильтруется сточная вода. Избыточный активный ил отводится из зоны взвешенного слоя по трубам, а возвратный ил поступает в зону аэрации.

Рис. 17. Аэротенк-отстойник: 1 – лоток; 2 –

Иначе устроен аэротенк-осветлитель (рис. 18). Сточная вода поступает в зону аэрации, где смешивается с активным илом и аэрируется. Затем смесь через окна 1 направляется в зону осветления и зону дегазации. В зоне осветления возникает взвешенный слой активного ила, через который фильтруется иловая смесь. Очищенная вода поступает в лотки и удаляется из аэротенка.

Рис. 18. Аэротенк-осветлитель: 1 –

Для интенсификации процесса биохимической очистки сточные воды перед аэротенком предлагается обрабатывать окислителями (озоном) с целью снижения ХПК. Для этой цели разработан процесс очистки сточных вод в глубоких шахтах. В них устанавливают вертикальные трубы, доходящие почти до дна шахты. Сточная вода подается по трубам одновременно с воздухом. Под действием высокого гидростатического давления кислород воздуха почти полностью растворяется в сточной воде. При этом степень его использования микроорганизмами увеличивается. Иловая смесь по подъемной трубе поднимается вверх, и после дегазации поступает в отстойник. Очистная установка занимает небольшую площадь. При ее работе отсутствует выделение запахов и достигается высокая степень очистки.

Обработка осадков

В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо утилизировать или обрабатывать с целью уменьшения загрязнения биосферы. Осадки сточных вод могут быть в основном минерального состава, в основном органического состава и смешанные. Они характеризуются содержанием сухого вещества, содержанием беззольного вещества, элементным составом, гранулометрическим составом.

Во вторичных отстойниках в осадке находится в основном избыточный активный ил, объем которого в 1,5-2 раза больше, чем объем осадка из первичного отстойника. В осадках содержится свободная и связанная вода, свободная вода (60-65 %) может быть легко удалена из осадка, связанная вода (30-35 %) – коллоидно-связанная и гигроскопическая, удаление которой затруднено.

Для обработки и обезвреживания осадков используются различные технологические процессы, представленные на рис. 20.

Уплотнение активного ила связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении удаляется в среднем 60 % влаги и масса осадка сокращается в 2,5 раза. Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

Процесс стабилизации осадков проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизацию ведут при полощи микроорганизмов в анаэробных и аэробных условиях.

Рис. 20. Схемы процессов обработки осадка

Кондиционирование осадков проводят для снижения удельного сопротивления и улучшения водоотдачи вследствие изменения форм связи воды. Кондиционирование проводят реагентными и безреагентными способами. При реагентной обработке осадка происходит коагуляция с разрывом сольвентных оболочек и улучшаются водоотдающие свойства.

К безреагентным методам обработки относятся тепловая обработка, замораживание с последующим отстаиванием, жидкофазное окисление, электрокоагуляция и радиационное облучение.

Термическую обработку осадков проводят в случае их подготовки к рекуперации. Сушку осадков проводят в сушилках различной конструкции.

Биохимическая очистка сточных вод

Сточные воды, прошедшие физико-химическую очистку, содержат еще достаточно большое количество растворенных, а в ряде случаев сильно диспергированных органических загрязнений. Поэтому дальнейшую очистку таких вод целесообразно проводить биохимическим методом.

Биохимическая очистка возможна только для производственных сточных вод, загрязненных веществами, которые могут быть окислены микроорганизмами. Используются аэробные и анаэробные методы биохимической очист­ки сточных вод. При аэробной очистке микроорганизмы куль­тивируются в активном иле или биопленке. Анаэробные методы очистки протекают без доступа кислорода; их используют, главным об­разом, для обезвреживания осадков.

Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем преимущественное развитие получает та или иная группа в зависимости от условий работы системы.

Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергию получают либо за счет фотосинтеза, используя энергию света, либо за счет хемосинтеза путем окисления некоторых неорганических соединений, например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и др.

Механизм биологического окисления в аэробных условиях гетеротрофными бактериями приводит к наращиванию новой биомассы и выделению CO 2 , N 2 , P:

органические вещества + O 2 + N 2 + P → микроорганизмы + СO 2 + H 2 O + биологически неокисляемые растворенные вещества

микроорганизмы + O 2 → CO 2 + H 2 O + N + P + биологически неразрушаемая часть клеточного вещества.

В очищенном стоке остаются биологически неокисляемые вещества, преимущественно в растворенном состоянии, т.к. коллоидные и нерастворенные вещества удаляются из воды методом сорбции.

Анаэробный процесс метановой ферментации происходит по следующей схеме:

органические вещества + H 2 O → CH 4 + CO 2 + C 5 H 7 NO 2 + NH 4 + + HCO 3 –

Анаэробный процесс денитрификации происходит в две стадии:

органическое вещество + NO 3 – → NO 2 – + CO 2 + H 2 O;

органическое вещество + NO 2 – → N 2 + CO 2 + H 2 O + OH – .

Перечисленные схемы процессов далеко не исчерпывают всех возможностей биоокисления, но именно они наиболее часто встречаются в практике очистки как городских, так и производственных сточных вод.

Скорость и полнота биохимических превращений в процессе очистки сточных вод определяются условиями биохимической очистки, создаваемыми в аэрационных сооружениях – аэротенках. Существенное влияние на эффективность окислительных процессов оказывают следующие факторы: централизация и децентрализация впуска очищаемых сточных вод и возвратного активного ила, тип аэратора, конструктивные особенности вторичных отстойников. Исследование кинетики окисления показало, что начальный этап процесса окисления с момента смешения сточных вод с активным илом в первые 20-40 мин аэрации характеризуется высокой степенью окислительной активности бактерий, которая затем падает по экспоненциальной зависимости.

Основными факторами, влияющими на интенсивность процесса, являются следующие:

· Оптимальный баланс источников углеродного и азотистого питания и обеспечивающий этот баланс технологический режим; наличие биогенных элементов;

· Исключительная приспособляемость микроорганизмов к изменяющимся условиям существования;

· Симбиотический характер существования микробных ассоциаций, что позволяет сформировать активный ил с усиленными физиологическими свойствами.

Для создания специфической микрофлоры необходимо подавать на очистные сооружения концентрированные сточные воды стабильного состава в течение длительного времени. Это способствует индуцированию ферментов, изменяет тип обмена веществ бактериальных клеток и закрепляет приобретенные признаки наследственно. В результате формируется активный ил с повышенными окислительными свойствами, что приводит к росту окислительной мощности сооружений биоочистки. Специфическая микрофлора активного ила способна нивелировать залповые выбросы сточных вод, характеризуемых высокими концентрациями загрязняющий веществ.

Биохимический показатель

Сточные воды, направляемые на биохи­мическую очистку, характеризуются величиной БПК и ХПК.

БПК - это биохимическая потребность в кислороде или количество кисло­рода, использованного при биохимических процессах окисления орга­нических веществ (не включая процессы нитрификации) за опреде­ленный промежуток времени (2, 5, 8, 10, 20 сут), в мг О 2 на 1 мг вещества. Например: БПК 5 - биохимическая потребность в кисло­роде за 5 сут. БПК п - полная биохимическая потребность в кисло­роде до начала процессов нитрификации. ХПК - химическая по­требность в кислороде, т.е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде. ХПК также выражают в мг О 2 на 1 мг вещества.

Для неорганических веществ, которые практически не поддают­ся окислению, также устанавливают максимальные концентрации. Если такие концентрации превышены, воды нельзя подвергать био­химической очистке.

Биоразлагаемость сточных вод характеризуется через биохимический показатель, под которым понимают соотношение БПК/ХПК.

Биохимический показатель является параметром, необходимым для расчета и эксплуатации промышленных сооружений для очист­ки сточных вод. Его значения колеблются в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий биохимический показатель (не больше 0,3); бытовые сточные воды - свыше 0,5. По биохимическому показателю концентрации загрязнений и токсичности промышленные сточные воды делят на четыре группы.

Первая группа имеет биохимический показатель выше 0,2. К этой группе, например, относятся сточные воды пищевой промышленно­сти (дрожжевых, крахмальных, сахарных, пивоваренных заводов), прямой перегонки нефти, синтетических жирных кислот, белково-витаминных концентратов и др. Органические загрязнения этой груп­пы не токсичны для микробов.

Вторая группа имеет показатель в пределах 0,02-0,10. В эту груп­пу входят сточные воды коксования, азотнотуковых, коксохимичес­ких, газосланцевых, содовых заводов. Эти воды после механической очистки могут быть направлены на биохимическое окисление.

Третья группа имеет показатель 0,001-0,01. К ней относятся, на­пример, сточные воды процессов сульфирования. хлорирования, про­изводства масел и ПАВ, сернокислотных заводов, предприятий чер­ной металлургии, тяжелого машиностроения и др. Эти воды после механической и физико-химической локальной очистки могут быть направлены на биохимическое окисление.

Четвертая группа имеет показатель ниже 0,001. Сточные воды этой группы в основном содержат взвешенные частицы. К этим во­дам относятся стоки угле- и рудообогатительных фабрик и др. Для них используют механические методы очистки.

Сточные воды первой и второй групп относительно постоянны по виду и расходу загрязнений. После очистки они применимы в системах оборотного водоснабжения. Сточные воды третьей группы образуются периодически и отличаются переменной концентрацией загрязнений, устойчивых к биохимическому окислению. Они загряз­нены веществами, которые хорошо растворимы в воде. Эти воды не­пригодны для оборотного водоснабжения.

Биохимическое окисление проводят как в естественных условиях на полях фильтрации, орошения и биологических прудах, так и в искусственно созданных условиях на биофильтрах и в аэротенках. Поля фильтрации, поля орошения и биофильтры функционируют за счет почвенных биоценозов; биологические пруды и аэротенки-биоценозов водоемов. На нефтебазах используют капельные и высоконагружаемые биофильтры. Для проведения биохимической очистки сточные воды, содержащие нефтепродукты, смешивают с хозяйственно-бытовыми.[ ...]

Биохимическую очистку ¡сточных вод нефтеперерабатывающих заводов рекомендуется проводить в смеси с бытовыми сточными водами или со сточными водами нефтехимических производств.[ ...]

Биохимическая очистка сточных вод базируется либо на использовании широкого круга водных микроорганизмов, которые входят в состав разнообразных ценозов - илов, биопленки и т. п., либо на применении адаптированных, высокоактивных микроорганизмов, особенно их ассоциаций, или, наконец, на внедрении в технику очистки иммобилизованных (адсорбированных или химически закрепленных на твердых поверхностях) биологических катализаторов - ферментов.[ ...]

Биохимическая очистка сточных вод вследствие чрезвычайно высокой их концентрации и щелочности становится возможной только после снижения их активной реакции и БПК путем подкис-ления и последующего сбраживания в метантенках (1, 4].[ ...]

Биохимическая очистка сточных вод осуществляется в результате сложного комплекса взаимосвязанных физических, химических и биологических процессов. По этой причине решение вопросов надежного автоматического управления системами аэрации сточных вод является сложной и весьма актуальной практической задачей. Системы аэрации сточных вод широко применяются на очистных станциях различной пропускной способности. Большая энергоемкость этих систем приводит к значительным эксплуатационным затратам.[ ...]

Биохимическая очистка сточных вод от органических загрязнений проводится под воздействием сложного комплекса организмов, развивающегося в активном иле очистного сооружения. Активный ил представляет собой хлопьевидный осадок, напоминающий хлопья гидроксида железа, и состоит в основном из бактерий, заключенных в слизь зоогелей; в нем находятся также актиномицеты, водные грибы и дрожжи. Качественный и количественный состав отдельных групп активного ила зависит от состава и концентрации загрязняющих веществ в очищаемой воде. В воде аэротенков могут присутствовать простейшие организмы. С физико-химической точки зрения активный ил - это коллоид, существующий при рН=4-9 с отрицательным зарядом.[ ...]

Биохимический процесс очистки сточных вод может протекать в аэробных и анаэробных условиях. Первый происходит в присутствии растворенного в воде кислорода. Этот процесс в сущности представляет собой модификацию протекающего в природе естественного процесса самоочищения водоемов. Биологическое окисление исходных органических загрязнений сточных вод в аэробных условиях гетеротрофными бактериями приводит к образованию новой биомассы, содержащей диоксид углерода, воду и биологически неокисляемые растворенные вещества. Для аэробной биохимической очистки сточны:-: вод используют в основном биологические пруды, аэрируемые лагуны, биофильтры и аэротенки. Наибольшее распространение среди методов биоочистки промышленных сточных вод получили процессы с использованием активного ила, проводимые в аэротенках.[ ...]

Биохимическая очистка сточных вод в зависимости от требований к спуску сточных вод в водоем может быть полная и неполная (см. § 87).[ ...]

Биохимическая очистка является одним из основных методов очистки сточных вод НПЗ как цри повторном их использовании в системах оборотного водоснабжения, так и цри сбросе их в водоем. В настоящее время основным сооружением биохимической очистки сточных вод является аэротенк. Однако большая продолжительность обработки сточных вод в аэротенках, значительная емкость сооружений,большой расход воздуха и электроэнергии заставляют искать пути интенсификации этого процесса для снижения капитальных и эксплуатационных затрат.[ ...]

При биохимической очистке сточных вод одноатомные фенолы (сам фенол, крезолы) легко окисляются до углекислого газа и воды. В отличие от этого окисление фенолов более сложного строения, а также нафтолов, антролов и особенно двух- и многоатомных фенолов (например, гидрохинона, пирокатехина) протекает значительно труднее и сопровождается образованием целого ряда биохимически стабильных органических продуктов .[ ...]

Локальная очистка сточных вод от эмульгаторов, не способных к биохимическому распаду. Широко применяемый в промышленности в качестве эмульгатора некаль не разрушается в процессе биохимической очистки сточных вод и при известных концентрациях угнетает процессы нитрации и окисления других органических соединений. Кроме того, присутствие некаля в воде значительно ухудшает ее органолептические свойства. Возможность применения метода ионообмена для извлечения некаля из промывных вод основана на способности сильноосновных анионитов (например АВ-16) селективно обменивать ион хлора на анион вгор-бутилнафталинсульфокислоты. Регенерация анионита производится водно-спиртовыми растворами хлористого натрия. После отгонки спирта и части воды из регенерирующего раствора и охлаждения его некаль выпадает в виде кристаллов, а маточник возвращается в цикл ионообмена или регенерации.[ ...]

Устройства биохимической очистки сточных вод являются обычно конечным звеном очистного комплекса, поэтому описанию методов их контроля и регулирования посвящены две последние главы. В главе VII рассматриваются новые приборы для измерения содержания растворенного кислорода, БПК, концентрации активного ила, окислительно-восстановительного потенциала, уровнемеры специального назначения. Некоторые из этих приборов разработаны в Советском Союзе с участием авторов и их сотрудников и впервые освещаются в непериодической печати. Содержание главы VIII составляет материал некоторых новых работ, посвященных построению математической модели процесса БХО, а также анализу и синтезу систем его регулирования.[ ...]

В связи с этим сточные воды, содержащие жирные кислоты, необходимо подвергать возможно полной очистке с помощью различных физико-химических методов, доводя содержание жирных кислот до 1,5 г/л (БПКполн 1500-2000 мг 02/л). Биохимическая очистка сточных вод с большей концентрацией жирных кислот неизбежно ведет к безвозвратной потере большого количества ценных промышленных продуктов

Другим методом биохимической очистки сточных вод является создание биологических прудов, в которых используется способность природных вод к самоочищению. Биологические пруды представляют собой водоемы площадью 0,5-1,0 га, в которых сточные воды могут очищаться в аэробных и анаэробных условиях. Анаэробные пруды служат для предварительной очистки высококонцентрированных сточных вод: за 30-50 суток обеспечивается снижение БПК в воде на 50-70 %. Глубина таких прудов достигает 2,5-3 м.[ ...]

В Советском Союзе биохимическая очистка является одним из основных методов очистки нефтьсодержащих сточн ных вод перед сбросом в водоемы. При этом следует отметить, что основными наиболее эффективными сооружениями биохимической очистки сточных вод на отечественных НПЗ и НХЗ являются аэротенки. Сравнивая в целом состояние биохимической очистки сточных вод НПЗ и НХЗ в СССР и за рубежом, можно сказать, что наша страна находится на уровне ведущих зарубежных стран, а по глубине очистки даже превосходит многие страны.[ ...]

Сущность процесса биохимической очистки. Впервые в СССР метод биохимической очистки сточных вод НПП предложен в 1975 г. Я.А.Карелиным и Г.И.Воробьевой. Этот метод очистки сточных вод основан на способности микроорганизмов использовать для питания находящиеся в сточных водах органические вещества (органические кислоты, спирты, белки, углеводы и т.д.), которые для них являются источником углерода. Азот, фосфор и калий, которые также необходимы для жизнедеятельности, микроорганизмы получают из различных соединений: азот - из аммиака, нитратов, аминокислот, фосфор и калий - из минеральных солей.[ ...]

Процесс биохимической очистки сточных вод от органических веществ в аэротенках состоит из таких этапов: адсорбция и коагуляция активным илом взвешенных и коллоидных частиц, окисление микроорганизмами растворенных и адсорбированных илом органических соединений, нитрификация и регенерация активного ила. Избыточный активный ил удаляется из сооружения.[ ...]

Вторым важным приемом биохимической очистки сточных вод является аэрация их в аэротенках с активным илом. Механически осветленную сточную воду подводят в открытые резервуары коридорного типа и интенсивно перемешивают с достаточным количеством воздуха барботированием или с помощью перемешивающих приспособлений (щетки или мешалки). Бактерии активного ила образуют хлопья, свободно взвешенные в воде. Через соответствующие промежутки времени (минимум 1 ч) обработанная сточная вода отводится для отстаивания; часть активного ила снова возвращают в аэротенк, а избыточную часть его удаляют.[ ...]

Разработана технология биохимической очистки сточных вод от ионов тяжелых металлов: Сг, Си2+, 2п2+, №2+, Бе2+, Ре3+. Суть метода заключается в обработке сточной воды накопительной культурой суль-фатвосстанавливающих бактерий, которые в анаэробных условиях при наличии органического питания восстанавливают содержащиеся в воде сульфаты в нерастворимые сульфиды, которые легко отстаиваются и удаляются в виде шлама. Процесс очистки происходит в специальных сооружениях - биовосстановителях.[ ...]

Загрязненность фенольных вод каменноугольной смолой обычно находится в пределах 0,5 г/дм3 в отдельные периоды может увеличиваться до 1 г/дм3 и более. Загрязненность взвешенными веществами, главным образом бактериальным илом, происходит в процессе биохимической очистки сточных вод и находится в пределах до 1 г/дм3. По данным исследований, оптимальная температура отстаивания фенольных вод 35-40 °С, pH 7,0-7,5.[ ...]

Одной из важнейших задач при биохимической очистке сточных вод в аэротенках является обеспечение кислородом микроорганизмов, которые производят окисление органических примесей в воде. Процесс очистки сточных вод в аэротенке состоит из ряда параллельных и последовательных стадий превращений веществ, участвующих в биохимических реакциях. Изменения, происходящие при этом с кислородом, могут быть представлены следующим образом. При подаче воздуха в воду образуются пузырьки, из которых кислород переходит в иловую смесь и, перемешиваясь, равномерно распределяется в ней. Затем растворенный кислород адсорбируется бактериальными клетками, входящими в состав хлопков активного ила, и расходуется на окисление органических веществ, также адсорбированных хлопками ила. В результате синтеза белков в клетке и деления ее образуются новые живые организмы. Кроме того, образуются продукты распада органических веществ - углекислота, вода, продукты неполного распада органических примесей, которые отводятся от хлопка активного ила в воду. Газообразные продукты распада удаляются из воды в процессе аэрации.[ ...]

Другой проблемой, связанной с биохимической очисткой сточных вод II системы, является содержание в них трудноокисляющихся веществ (нефти и нефтепродуктов), различных сернистых соединений, фенолов, а также значительного количества минеральных солей.[ ...]

Установлено, что ход процесса биохимической очистки сточных вод зависит от соотношений между количествами растворенного кислорода (окислителя), растворенных и диспергированных органических веществ (восстановителей) и ферментов, которые продуцируются бактериями (катализаторов). Редокс-потенциал позволяет определять непосредственно эти соотношения, выражая их в единицах электрического потенциала - милливольтах.[ ...]

При проектировании сооружений биохимической очистки сточных вод и анализе их работы обычно используют следующие расчетные параметры: скорость биологического окисления, стехиометрические коэффициенты для акцепторов электронов, скорость роста и физические свойства биомассы активного ила. Изучение химических изменений во взаимосвязи с биологическими превращениями, происходящими в биореакторе, дает возможность получить достаточно полное представление о работе сооружения. Для анаэробных систем, к которым можно отнести анаэробные фильтры, такие сведения нужны, чтобы обеспечить оптимальное значение pH среды, являющегося основным фактором нормальной работы очистных сооружений. В некоторых аэробных системах, например, в таких, в которых происходит нитрификация, контроль pH среды также необходим для обеспечения оптимальной скорости роста микроорганизмов. Для закрытых очистных сооружений, вошедших в практику в конце 60-х годов, в которых используется чистый кислород (окси-тенк), изучение химических взаимодействий стало необходимым не только для регулирования pH, но и для инженерного расчета газопроводного оборудования.[ ...]

Нефтепродукты тормозят процесс биохимической очистки сточных вод в аэротенках при 50 мг/л . Нефтяная пленка на поверхности воды пропитывает перья у перелетных птиц, они не могут взлететь и погибают.[ ...]

Задачей санитарной техники является не только очистка сточных вод, но и отделение очищенной жидкости от всей массы организмов, ведущих процесс. Поэтому одним из условий работы сооружений при биохимической очистке сточных вод является образование хлопка активного ила, способного к быстрому осаждению. До работ Мак Кинней и др. считалось, что свойство образовывать хлопок активного ила присуще лишь 1ооц 1оеа гат ета.[ ...]

Использование уплотненных ценозов резко ускоряло биохимическую очистку сточных вод от химических загрязнений. Так, очистка нефтесодержащих стоков с добавкой хозяйственно-бытовых сточных вод (соотношение 5:1), содержащих 10 -150 мг/л нефтепродуктов, ХПК в среднем 1080 мг 02/л, ВПК5 120 мг/л, БПКП0ЛН 340 мг 02/л, биохимический показатель 0,31, характеризовалась следующими показателями. Неполная биохимическая очистка в одну ступень при периоде аэрации 2-2,5 ч и концентрации активного ила 18 г/л снизила ХПК на 80%, содержание нефтепродуктов - на 75%, БПК5 - на 70%, БПКполн - на 72%.[ ...]

Схемой же США предусматривается обессоливание всех сточных вод НПЗ, что обусловливает повышенные примерно в 3 раза (исходя из доли сточных вод ЗЛОУ) капитальные затраты на обессоливание. Второй особенностью, связанной с дополнительными затратами, является биохимическая очистка сточных вод ЭЛОУ в составе общезаводского потока. С другой стороны, этой схемой предусмотрено отведение продувочной воды водоблоков, как не требующей очистки, в обход очистных сооружений (с последующим смешением с общезаводским потоком очищенных сточных вод перед совместным обессоливанием). Это решение уменьшает размер капиталовложений в систему очистки сточных вод примерно на одну треть (исходя из доли продувочной воды градирен). Следует также отметить, что при таком разделении содержание ингибиторов, биоцидов и других добавок в сточных водах перед биохимической очисткой значительно снижается. В условиях зарубежных НПЗ подобное разделение сточных вод оказывается возможным ввиду постоянного контроля над утечками нефтепродуктов, являющихся основным источником, загрязнения оборотной воды органическими веществами.[ ...]

Основным направлением совершенствования организации биохимической очистки сточных вод традиционно является создание крупных кустовых (городских) сооружений. Экономические преимущества этого направления обусловлены ярко выраженным эффектом агрегатной концентрации процессов очистки. С ростом концентрации производственных процессов затраты монотонно возрастают, но постоянные и переменные расходы увеличиваются в разной степени. Это позволяет реализовать процедуру выбора типа сооружений как оптимизационную. Поскольку большинство видов производственных расходов (особенно затраты, связанные с созданием и использованием основных фондов) растут в меньшей степени, чем масштаб производственной деятельности, удельные величины этих затрат на единицу объема очищенных стоков или массы извлеченных из них загрязнений сокращаются.[ ...]

Акрилонитрил оказывает вредное действие на сооружения биохимической очистки сточных вод; концентрация более 20 мг/л тормозит сбраживание осадка сточных вод в анаэробных условиях .[ ...]

Основой для разработки методов двух- и многоступенчатой биохимической очистки сточных вод является идея культивирования на очистных станциях активных илов, приспособленных к окислению отдельных групп органических загрязнений. Считается, что чем ближе адаптация (специализация) активного ила к данному виду загрязнений, тем успешнее проходит процесс биохимической очистки. Одним из путей для инженерной реализации этой идеи является создание ступенчатой биохимической очистки, на каждой ступени которой функционирует определенная культура активного ила. Понятно, что чем больше разница в скоростях биохимического окисления отдельных компонентов сточных вод, чем выше их начальные концентрации, тем эффективнее применение ступенчатой схемы очистки.[ ...]

Наиболее существенным вопросом наладки и пуска сооружений биохимической очистки сточных вод является наращивание активного ила в аэротенках или биопленки в биологических фильтрах.[ ...]

Окситенк ВНИИводгео является комбинированным сооружением для биохимической очистки сточных вод с применением технического кислорода . Для достижения максимальной эффективности использования подаваемого в сооружение кислорода часть окситенка (реактор), в котором происходит насыщение иловой смеси кислородом, герметизируется. Отделение очищенной воды от активного ила происходит в открытом резервуаре-илоотделителе. Перемешивание иловой смеси и насыщение ее кислородом осуществляется механическим поверхностным аэратором, кислород поступает в окситенк автоматически по мере падения давления газа в реакционной зоне. Удаление инертных газов (азота и углекислого газа) также автоматизировано. Окситенк ВНИИводгео работает по принципу аэротенка-смесителя, обеспечивая полную биохимическую очистку промышленных сточных вод с БЙКП0ЛН - 250-300 мг 02/л.[ ...]

Наибольшее распространение получили малогабаритные блочные установки биохимической очистки сточных вод на базе активного ила типа КУ пропускной способностью от 25 до 400 м3/сутки. Конденсатсодержащие сточные воды образуются на различных этапах добычи и промысловой подготовки газа. Это, прежде всего, сточные воды, получаемые в процессе основного производства (конденсационные и пластовые воды из сепараторов, рефлюксная вода из десорберов, вода от охлаждения насосов перекачки конденсата), составляющие до 90%, а также сточные воды вспомогательных объектов. Метанол, гликоли и газовый конденсат являются также основными загрязнителями сточных вод ГПЗ.[ ...]

Разность между ХПК и БПК характеризует наличие примесей, не окисляющихся биохимическим путем, и количество органических веществ, идущих на построение клеток микроорганизмов. Для бытовых сточных вод БПКполн составляет 85-90% от ХПК- По соотношению БПКполн/ХПК можно судить о возможности применения определенного метода очистки сточных вод. Если соотношение БПК/ ХПК>0,5, то это указывает на возможность применения биохимической очистки сточной воды; при соотношении БПК/ХПК [ ...]

Финская фирма «Экора» запатентовала установки типа ХКН, на которых применена биохимическая очистка сточных вод с введением реагентов перед аэротенком (симультанное осаждение). Установка действует периодически, поэтому она рекомендуется для объектов с большим колебанием расхода и состава сточных вод. Она рассчитана на очистку сточных вод от 2500 жителей. Установка выполняется из железобетона и состоит из двух резервуаров - приемного и аэротенка. Работа ее автоматизирована и управляется в зависимости от уровня жидкости в аэротенке с помощью выпускного клапана. Сточные воды поступают в приемный резервуар и эрлифтом перекачиваются в аэротенк. В подающий трубопровод подается реагент. Одновременно производятся наполнение аэротенка и очистка сточных вод в нем. Цикл наполнения рассчитан на 21ч. Фирмой рекомендуется поддерживать его от 5 до 2 ч. После наполнения резервуара выключается из работы воздуходувка, в связи с чем прекращаются аэрация и подача сточных вод в аэротенк эрлифтом. В аэротенке сточные воды отстаиваются в течение 1,5 ч (с 2 ч до 3 ч 30 мин). Затем открывается выпускной клапан, очищенные сточные воды вытекают из аэротенка. Конец выпускного трубопровода в аэротенке поддерживается поплавком в верхней части аэротенка. В связи с тем, что трубопровод изменяет свое положение по высоте, он имеет шарнирное соединение.[ ...]

Перспективным направлением в разработке высокоэффективной технологии обработки воды является исследование воздействия электрического поля на биологические объекты, в том числе и на микроорганизмы, осуществляющие процессы биохимической очистки сточных вод в биоокислителях и обезвреживания образующихся осадков в метантенках, перегнивателях и т. п. Известно, что умеренное воздействие электрического поля стимулирует рост и жизнедеятельность бактерий, увеличивая их окислительную способность по отношению к органическим примесям воды. Это направление выдвигает ряд специфических задач в исследовании данного феноменологического фактора, решение которых может оказать значительное влияние на интенсификацию процессов биоокисления органических примесей, содержащихся как в сточных водах, так и в образующихся осадках.[ ...]

В статье Я. А. Карелина, опубликованной в 1959 г. , приведены результаты исследований по биохимической очистке сточных вод электрообессоливающей установки (ЭЛОУ), прошедших нефтеловушку, при разбавлении стока 1: 1. В качестве разбавляющей воды применялась смесь, состоящая из фекальной жидкости и 0,5 объема условно чистой воды. Опыты проводились на полупроизводственной установке.[ ...]

В последнее время за рубежом и у нас в исследовательской практике для оценки хода процесса биохимической очистки сточных вод стали пользоваться окислительно-восстановительным потенциалом, называемым иначе редокс-по-тенциалом фо. Этот показатель более полно характеризует процесс биохимического окисления, чем, например, количество растворенного кислорода. Кроме того, на основании величины фо можно дать более объективную оценку процесса в тех случаях, когда загрязнения содержат токсичные по отношению к микроорганизмам вещества и процесс тормозится, несмотря на наличие достаточного количества кислорода.[ ...]

Последующий процесс регенерации активного ила может происходить или в самом сооружении, производящем биохимическую очистку (аэротенке), или в отдельном сооружении (регенераторе). В первом случае ко времени адсорбции прибавляется время на регенерацию, и сооружение рассчитывается на проток сточных вод по сумме времени; во втором случае сооружение (аэротенк) может быть рассчитано только на проток сточных вод по времени, необходимому для адсорбции, а регенератор рассчитывается на время регенерации только для протока в нем активного ила, расход которого значительно меньше, чем расход сточных вод. Поэтому при определенных условиях второй случай в строительном и эксплуатационном отношении может быть более выгодным, чем первый. Для того чтобы можно было решить эту задачу, проектировщик сооружений биохимической очистки сточных вод должен определять время, необходимое для процесса адсорбции органических веществ активным илом, и время, необходимое для процесса его регенерации.[ ...]

Биологический способ регенерации активного угля в аэробных условиях, как правило, используется в процессе биохимической очистки сточных вод в случае адсорбции биологически разрушаемых органических веществ.[ ...]

Перед поступлением на сооружения биохимической очистки сточные воды последовательно проходят аварийный амбар, песколовки, нефтеловушки, пруды дополнительного отстоя, песчаные фильтры или флотаторы и т. д. Задачей этих сооружений является по возможности более полное удаление загрязнений до предельно допустимых для биохимической очистки концентраций. В случае несовершенной работы указанных сооружений и поступления загрязнений в более высоких концентрациях работа узла биохимической очистки будет нарушена.[ ...]

Это количество бытовых стоков соответствует сбросу города с населением 450-500 тыс. человек. Получить такое количество бытовых вод для очистки сточных вод нефтеперерабатывающего завода нельзя (нереально). Таким образом, произвести полную биохимическую очистку сточных вод завода, перерабатывающего высокосернистую нефть, с применением деэмульгатора НЧК не представляется возможным.[ ...]

Большее распространение получила двухступенчатая схема, в которой биофильтры первой ступени заменены на аэротенки. Такая замена при очистке производственных сточных вод химических предприятий вполне оправдана и целесообразна, поскольку дает возможность направлять на сооружения биохимической очистки сточные воды с более высокими концентрациями органических веществ (табл. У1Н-7).[ ...]

В зависимости от назначения отстойников в технологической схеме очистной станции они подразделяются на первичные и вторичные. Первичными называются отстойники перед сооружениями для биохимической очистки сточных вод; вторичными - отстойники, устраивае мые для осветления сточных вод, прошедших биохимическую очистку.[ ...]

В процессе питания микроорганизмы получают материал для своего строения, вследствие этого происходит прирост массы бактерий активного ила, а в процессе дыхания они используют кислород воздуха. Содержащиеся в сточных водах органические вещества в результате окислительных процессов минерализуются, и конечными продуктами окисления являются диоксид углерода и вода. Некоторые органические соединения окисляются не полностью, образуются промежуточные продукты. В процессе биохимической очистки сточных вод происходит также окисление сероводорода до серы и серной кислоты, а аммиака - до азотистой и азотной кислот (нитрификация).[ ...]

Большинство гетеротрофных организмов получает энергию в результате биологического окисления органических веществ - дыхания. Водород от окисляемого вещества (см. § 24) передается в дыхательную цепь. Если роль конечного акцептора водорода выполняет только кислород, процесс носит название аэробного дыхания, а микроорганизмы являются строгими (облигатными) аэробами, которые обладают полной цепью ферментов переноса (см. рис. 14) и способны жить только при достаточном количестве кислорода. К аэробным микроорганизмам относятся многие виды бактерий, гри-6¿i, водоросли, большинство простейших. Аэробные сап-рофиты играют основную роль в процессах биохимической очистки сточных вод и самоочищении водоема.